Iranian Journal of Mathematical Sciences and Informatics
Vol. 15, No. 2 (2020), pp 51-60
DOI: 10.29252/ijmsi.15.2.51

On Subclasses of Analytic and m-Fold Symmetric bi-Univalent Functions

Abbas Kareem Wanas ${ }^{a, *}$, Abdulrahman H. Majeed ${ }^{b}$
Department of Mathematics, College of Science, ${ }^{a}$ University of Al-Qadisiyah, Iraq.
${ }^{b}$ Baghdad University, Iraq.
E-mail: abbas.kareem.w@qu.edu.iq
E-mail: ahmajeed6@yahoo.com

Abstract

The purpose of the present paper is to introduce and investigate two new subclasses $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ of Σ_{m} consisting of analytic and m-fold symmetric bi-univalent functions defined in the open unit disk U. We obtain upper bounds for the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions belonging to these subclasses. Many of the well-known and new results are shown to follow as special cases of our results.

Keywords: Analytic functions, Univalent functions, m-Fold symmetric biunivalent functions, Coefficient estimates.

2010 Mathematics Subject Classification: 30C45, 30C50.

1. Introduction

Let \mathcal{A} denote the class of functions f that are analytic in the open unit disk $U=\{z \in C:|z|<1\}$. And normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

[^0]Let S be the subclass of \mathcal{A} consisting of the form (1.1) which are also univalent in U. The Koebe one-quarter theorem (see [4]) states that the image of U under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where $g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of bi-univalent functions in U given by (1.1). For a brief history and interesting examples in the class Σ see [18], (see also $[6,7,8,10,14,15,21,22]$).

For each function $f \in S$, the function $h(z)=\left(f\left(z^{m}\right)\right)^{\frac{1}{m}},(z \in U, m \in N)$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see $[9,12]$) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1}, \quad(z \in U, m \in N) \tag{1.3}
\end{equation*}
$$

We denote by S_{m} the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.3). In fact, the functions in the class S are one-fold symmetric.

In [19] Srivastava et al. defined m-fold symmetric bi-univalent functions analogues to the concept of m-fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in N$. Furthermore, for the normalized form of f given by (1.3), they obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
& g(w)=w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots, \tag{1.4}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (1.4) coincides with the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.

Recently, many authors investigated bounds for various subclasses of m-fold bi-univalent functions (see $[1,2,5,16,17,19,20]$).

The aim of the present paper is to introduce the new subclasses $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ of Σ_{m} and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

In order to prove our main results, we require the following lemma (see [4]).
Lemma 1.1. If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in N$, where \mathcal{P} is the family of all functions h analytic in U for which

$$
\operatorname{Re}(h(z))>0, \quad(z \in U)
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U)
$$

2. Coefficient Estimates for the Functions Class $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$

Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ if it satisfies the following conditions:

$$
\begin{equation*}
\left|\arg \left[\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\alpha \pi, \quad(z \in U) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\arg \left[\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\alpha \pi, \quad(w \in U) \tag{2.2}\\
(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0, m \in N)
\end{gather*}
$$

where the function $g=f^{-1}$ is given by (1.4).
Theorem 2.2. Let $f \in K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0, m \in N)$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{(m+\gamma) \sqrt{(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2} \alpha^{2}(m+1)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2 m+\gamma)(\lambda+1)} \tag{2.4}
\end{equation*}
$$

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{align*}
\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1} & =\alpha p_{m} \tag{2.9}\\
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left(2 a_{2 m+1}+(\gamma-1) a_{m+1}^{2}\right) & +\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2} \tag{2.10}\\
-\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1} & =\alpha q_{m} \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left((2 m+\gamma+1) a_{m+1}^{2}-2 a_{2 m+1}\right) & +\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.12}
\end{align*}
$$

Making use of (2.9) and (2.11), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(m+\gamma)^{2}(\lambda+1)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12) and (2.14), we find that

$$
\begin{aligned}
& \left(\frac{(2 m+\gamma)(m+\gamma)(\lambda+1)}{2 \lambda}+\frac{(m+\gamma)^{2}(1-\lambda)}{2 \lambda^{2}}\right) a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{(\alpha-1)(m+\gamma)^{2}(\lambda+1)^{2}}{4 \lambda^{2} \alpha} a_{m+1}^{2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{4 \lambda^{2} \alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{(m+\gamma)^{2}\left[(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)\right]} \tag{2.15}
\end{equation*}
$$

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{(m+\gamma) \sqrt{(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (2.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{align*}
& \frac{(2 m+\gamma)(\lambda+1)}{\lambda} a_{2 m+1}-\frac{(2 m+\gamma)(m+1)(\lambda+1)}{2 \lambda} a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) . \tag{2.16}
\end{align*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\lambda^{2} \alpha^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{\lambda \alpha\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)} . \tag{2.17}
\end{equation*}
$$

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2} \alpha^{2}(m+1)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2 m+\gamma)(\lambda+1)}
$$

which completes the proof of Theorem 2.2.

3. Coefficient Estimates for the Functions Class $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$

Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ if it satisfies the following conditions:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(z \in U) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(w \in U) \tag{3.2}\\
(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0, m \in N)
\end{gather*}
$$

where the function $g=f^{-1}$ is given by (1.4).
Theorem 3.2. Let $f \in K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta) \quad(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0, m \in N)$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m+\gamma} \sqrt{\frac{2(1-\beta)}{\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2}(m+1)(1-\beta)^{2}}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4(1-\beta)}{(2 m+\gamma)(\lambda+1)} \tag{3.4}
\end{equation*}
$$

Proof. It follows from conditions (3.1) and (3.2) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{gather*}
\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=(1-\beta) p_{m} \tag{3.7}\\
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left(2 a_{2 m+1}+(\gamma-1) a_{m+1}^{2}\right)+\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=(1-\beta) p_{2 m}
\end{gather*}
$$

$$
\begin{equation*}
-\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=(1-\beta) q_{m} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left((2 m+\gamma+1) a_{m+1}^{2}-2 a_{2 m+1}\right) & +\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =(1-\beta) q_{2 m} \tag{3.10}
\end{align*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(m+\gamma)^{2}(\lambda+1)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.12}
\end{equation*}
$$

Adding (3.8) and (3.10), we obtain

$$
\left(\frac{(2 m+\gamma)(m+\gamma)(\lambda+1)}{2 \lambda}+\frac{(m+\gamma)^{2}(1-\lambda)}{2 \lambda^{2}}\right) a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right) .
$$

Therefore, we have

$$
a_{m+1}^{2}=\frac{2 \lambda^{2}(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{(m+\gamma)^{2}\left[\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1\right]} .
$$

Applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m+\gamma} \sqrt{\frac{2(1-\beta)}{\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (3.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
\frac{(2 m+\gamma)(\lambda+1)}{\lambda} a_{2 m+1}-\frac{(2 m+\gamma)(m+1)(\lambda+1)}{2 \lambda} a_{m+1}^{2}=(1-\beta)\left(p_{2 m}-q_{2 m}\right),
$$

or equivalently

$$
a_{2 m+1}=\frac{(m+1)}{2} a_{m+1}^{2}+\frac{\lambda(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)} .
$$

Upon substituting the value of a_{m+1}^{2} from (3.12), it follows that

$$
a_{2 m+1}=\frac{\lambda^{2}(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{\lambda(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)}
$$

Applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2}(m+1)(1-\beta)^{2}}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4(1-\beta)}{(2 m+\gamma)(\lambda+1)}
$$

which completes the proof of Theorem 3.2.

4. Corollaries and Consequences

This section is devoted to the presentation of some special cases of the main results.

For one-fold symmetric bi-univalent functions, Theorems 2.2 and 3.2 reduce to the following corollaries:

Corollary 4.1. Let $f \in K_{\Sigma}(\lambda, \gamma ; \alpha)(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{4 \lambda \alpha}{(1+\gamma) \sqrt{(\lambda+1)\left(\frac{2 \lambda \alpha(2+\gamma)}{1+\gamma}+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{16 \lambda^{2} \alpha^{2}}{(1+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2+\gamma)(\lambda+1)}
$$

Corollary 4.2. Let $f \in K_{\Sigma}^{*}(\lambda, \gamma ; \beta)(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{2 \lambda}{1+\gamma} \sqrt{\frac{2(1-\beta)}{\frac{2+\gamma}{1+\gamma} \lambda^{2}+\frac{1}{1+\gamma} \lambda+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{16 \lambda^{2}(1-\beta)^{2}}{(1+\gamma)^{2}(\lambda+1)^{2}}+\frac{4(1-\beta)}{(2+\gamma)(\lambda+1)}
$$

The classes $K_{\Sigma}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ are defined in the following way:

Definition 4.3. A function $f \in \Sigma$ given by (1.1) is said to be in the class $K_{\Sigma}(\lambda, \gamma ; \alpha)$ if it satisfies the following conditions:

$$
\left|\arg \left[\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2}, \quad(z \in U)
$$

and

$$
\begin{gathered}
\left|\arg \left[\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2}, \quad(w \in U) \\
(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0)
\end{gathered}
$$

where the function $g=f^{-1}$ is given by (1.2).
Definition 4.4. A function $f \in \Sigma$ given by (1.1) is said to be in the class $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ if it satisfies the following conditions:

$$
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(z \in U)
$$

and

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(w \in U) \\
(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0)
\end{gathered}
$$

where the function $g=f^{-1}$ is given by (1.2).
Remark 4.5. It should be remarked that the classes $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha), K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$, $K_{\Sigma}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ are a generalization of well-known classes consider earlier. These classes are:
(1) For $\gamma=0$, the classes $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $S_{\Sigma_{m}}(\alpha, \lambda)$ and $S_{\Sigma_{m}}(\beta, \lambda)$ which were given recently by Altinkaya and Yalcin [2].
(2) For $\lambda=1$ and $\gamma=0$, the classes $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $S_{\Sigma_{m}}^{\alpha}$ and $S_{\Sigma_{m}}^{\beta}$ which were introduced by Altinkaya and Yalcin [1].
(3) For $\lambda=\gamma=1$, the classes $K_{\Sigma_{m}}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $\mathcal{H}_{\Sigma, m}^{\alpha}$ and $\mathcal{H}_{\Sigma, m}(\beta)$ which were introduced by Srivastava et al. [19].
(4) For $\lambda=1$, the classes $K_{\Sigma}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $P_{\Sigma}(\alpha, \gamma)$ and $P_{\Sigma}(\beta, \gamma)$ which were considered by Prema and Keerthi [13].
(5) For $\lambda=1$ and $\gamma=0$, the classes $K_{\Sigma}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $S_{\Sigma}^{*}(\alpha)$ and $S_{\Sigma}^{*}(\beta)$ which were given by Brannan and Taha [3].
(6) For $\lambda=\gamma=1$, the classes $K_{\Sigma}(\lambda, \gamma ; \alpha)$ and $K_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the classes $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$ which were investigated by Srivastava et al. [18].

Remark 4.6. By specifying the parameters λ and γ, we can derive a number of known results. Some of them are given below:
(1) If we take $\gamma=0$ in Theorems 2.2 and 3.2, we obtain the results which were proven by Altinkaya and Yalcin [2, Theorems 1 and 2].
(2) If we take $\lambda=\gamma=1$ in Theorems 2.2 and 3.2 , we obtain the results which were proven by Srivastava et al. [19, Theorems 2 and 3].
(3) If we put $\lambda=1$ in Corollaries 4.1 and 4.2 , we have the results which were proven by Prema and Keerthi [13, Theorems 2.2 and 3.2].
(4) If we set $\lambda=1$ and $\gamma=0$ in Corollaries 4.1 and 4.2 , we have the results obtained by Murugusundaramoorthy et al. [11, Corollaries 6 and 7].
(5) If we take $\lambda=\gamma=1$ in Corollaries 4.1 and 4.2, we obtain the results obtained by Srivastava et al. [18, Theorems 1 and 2].

Acknowledgments

The authors extend their thanks and gratitude to the referees for their efforts in reviewing the article.

References

1. S. Altinkaya, S. Yalcin, Coefficient Bounds for Certain Subclasses of m-Fold Symmetric Bi-Univalent Functions, Journal of Mathematics, Art. ID 241683, (2015), 1-5.
2. S. Altinkaya, S. Yalcin, On Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Commun. Fac. Sci. Univ. Ank., Series A1, 67(1), (2018), 29-36.
3. D. A. Brannan, T. S. Taha, On Some Classes of Bi-Univalent Functions, Studia Univ. Babes-Bolyai Math., 31(2), (1986), 70-77.
4. P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
5. S. S. Eker, Coefficient Bounds for Subclasses of m-Fold Symmetric Bi-Univalent Functions, Turk. J. Math., 40, (2016), 641-646.
6. B. A. Frasin, M. K. Aouf, New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24, (2011), 1569-1573.
7. S. P. Goyal, P. Goswami, Estimate for Initial Maclaurin Coefficients of Bi-Univalent Functions for a Class Defined by Fractional Derivatives, J. Egyptian Math. Soc., 20, (2012), 179-182.
8. T. Hayami, S. Owa, Coefficient Bounds for Bi-Univalent Functions," Pan Amer. Math. J., 22(4), (2012), 15-26.
9. W. Koepf, Coefficients of Symmetric Functions of Bounded Boundary Rotations, Proc. Amer. Math. Soc., 105, (1989), 324-329.
10. N. Magesh, J. Yamini, Coefficient Bounds for Certain Subclasses of Bi-Univalent Functions, Int. Math. Forum, 8(27), (2013), 1337-1344.
11. G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coefficient Bounds for Certain Subclasses of Bi-Univalent Function, Abstr. Appl. Anal., Art. ID 573017, (2013), 1-3.
12. C. Pommerenke, On the Coefficients of Close-to-Convex Functions, Michigan Math. J., 9, (1962), 259-269.
13. S. Prema, B. S. Keerthi, Coefficient Bounds for Certain Subclasses of Analytic Function, J. Math. Anal., 4(1), (2013), 22-27.
14. H. M. Srivastava, D. Bansal, Coefficient Estimates for a Subclass of Analytic and BiUnivalent Functions, J. Egyptian Math. Soc., 23, (2015), 242-246.
15. H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions, Filomat,27(5), (2013), 831-842.
16. H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient Estimates for Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Acta Universitatis Apulensis, 41, (2015), 153-164.
17. H. M. Srivastava, S. Gaboury, F. Ghanim, Initial Coefficient Estimates for Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Acta Mathematica Scientia, 36B(3), (2016), 863-871.
18. H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain Subclasses of Analytic and BiUnivalent Functions, Appl. Math. Lett., 23, (2010), 1188-1192.
19. H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial Coefficient Bounds for a Subclass of m-Fold Symmetric Bi-Univalent Functions, Tbilisi Math. J., 7(2), (2014), 1-10.
20. H. Tang, H. M. Srivastava, S. Sivasubramanian, P. Gurusamy, The Fekete-Szegö Functional Problems for Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, J. Math. Ineq., 10, (2016), 1063-1092.
21. Q.-H. Xu, Y.-C. Gui, H. M. Srivastava, Coefficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 25, (2012), 990-994.
22. Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A Certain General Subclass of Analytic and BiUnivalent Functions and Associated Coefficient Estimate Problems," Appl. Math. Comput., 218, (2012), 11461-11465.

[^0]: * Corresponding Author

 Received 17 August 2017; Accepted 30 May 2018
 ©2020 Academic Center for Education, Culture and Research TMU

